chirolike2016-01-27 20:11:35

 

面对谷歌围棋AI 人类最后的智力骄傲即将崩塌

 

果壳网28日凌晨消息 1997年,国际象棋AI第一次打败顶尖的人类;2006年,人类最后一次打败顶尖的国际象棋AI。欧美传统里的顶级人类智力试金石,在电脑面前终于一败涂地,应了四十多年前计算机科学家的预言。

 

至少还有东方,人们自我安慰道。围棋AI长期以来举步维艰,顶级AI甚至不能打败稍强的业余选手。这似乎也合情合理:国际象棋中,平均每回合有35种可能,一盘棋可以有80回合;相比之下,围棋每回合有250种可能,一盘棋可以长达150回合。这一巨大的数目,足以令任何蛮力穷举者望而却步——而人类,我们相信,可以凭借某种难以复制的算法跳过蛮力,一眼看到棋盘的本质。

 

但是,无论人怎么想,这样的局面当然不可能永远延续下去。就在今天,国际顶尖期刊《自然》报道了谷歌研究者开发的新围棋AI。这款名为“阿尔法围棋”(AlphaGo)的人工智能,在没有任何让子的情况下以5:0完胜欧洲冠军,职业围棋二段樊麾。

 

 

面对谷歌围棋AI 人类最后的智力骄傲即将崩塌

 

AlphaGo与欧洲围棋冠军樊麾的5局较量。图片来源:参考文献[1]

 

这是人类历史上,围棋AI第一次在公平比赛中战胜职业选手。

 

AlphaGo的战绩如何?

 

此次比赛和以往不同。之前的比赛中,由于AI棋力比人类弱,人类选手都会让子,而且AI主要和业余段位的棋手比赛。而AlphaGo对战樊麾是完全公平的比赛,没有让子。职业二段樊麾出生于中国,目前是法国国家围棋队总教练,已经连续三年赢得欧洲围棋冠军的称号。

 

研究者也让AlphaGo和其他的围棋AI进行了较量,在总计495局中只输了一局,胜率是99.8%。它甚至尝试了让4子对阵Crazy Stone,Zen和Pachi三个先进的AI,胜率分别是77%,86%和99%。可见AlphaGo有多强大。

 

在接下来3月份,AlphaGo将和韩国九段棋手李世乭在首尔一战,奖金是由Google提供的100万美金。李世乭是最近10年中获得世界第一头衔最多的棋手。围棋是最后一个人类顶尖高手能战胜AI的棋类游戏。之前有人预测说,AI需要再花十几年才能战胜人类。所以这场比赛或许会见证历史,我们将拭目以待。

 

 

面对谷歌围棋AI 人类最后的智力骄傲即将崩塌

 

李世乭表示很荣幸自己将与电脑公平对弈。“无论结果如何,这都会是围棋史上极具意义的事件。”他说,“我听说谷歌Deep Mind的AI出人意料地强,而且正在变得更强。但我有自信至少这次能赢。”图片来源:tygem.com

 

AI下围棋到底有多难?

 

计算围棋是个极其复杂的问题,比国际象棋要困难得多。围棋最大有3361 种局面,大致的体量是10170,而已经观测到的宇宙中,原子的数量才1080。国际象棋最大只有2155种局面,称为香农数,大致是1047。

 

面对任何棋类,一种直观又偷懒的思路是暴力列举所有能赢的方案,这些方案会形成一个树形地图。AI只要根据这个地图下棋就能永远胜利。然而,围棋一盘大约要下150步,每一步有250种可选的下法,所以粗略来说,要是AI用暴力列举所有情况的方式,围棋需要计算250150种情况,大致是10360。相对的,国际象棋每盘大约80步,每一步有35种可选下法,所以只要算3580种情况,大概是10124。无论如何,枚举所有情况的方法不可行,所以研究者们需要用巧妙的方法来解决问题,他们选择了模仿人类大师的下棋方式。

 

机器学习

 

研究者们祭出了终极杀器——“深度学习”(Deep Learning)。深度学习是目前人工智能领域中最热门的科目,它能完成笔迹识别,面部识别,驾驶自动汽车,自然语言处理,识别声音,分析生物信息数据等非常复杂的任务。

 

 

面对谷歌围棋AI 人类最后的智力骄傲即将崩塌

 

描述AlphaGo研究成果的论文成为了1月28日的《自然》杂志的封面文章。图片来源:Nature/Google DeepMind

 

AlphaGo 的核心是两种不同的深度神经网络。“策略网络”(policy network)和 “值网络”(value network)。它们的任务在于合作“挑选”出那些比较有前途的棋步,抛弃明显的差棋,从而将计算量控制在计算机可以完成的范围里,本质上和人类棋手所做的一样。

 

其中,“值网络”负责减少搜索的深度——AI会一边推算一边判断局面,局面明显劣势的时候,就直接抛弃某些路线,不用一条道算到黑;而“策略网络”负责减少搜索的宽度——面对眼前的一盘棋,有些棋步是明显不该走的,比如不该随便送子给别人吃。将这些信息放入一个概率函数,AI就不用给每一步以同样的重视程度,而可以重点分析那些有戏的棋着。

 

 

面对谷歌围棋AI 人类最后的智力骄傲即将崩塌

 

AlphaGo所使用的神经网络结构示意图。图片来源:参考文献[1]

 

AlphaGo利用这两个工具来分析局面,判断每种下子策略的优劣,就像人类棋手会判断当前局面以及推断未来的局面一样。这样AlphaGo在分析了比如未来20步的情况下,就能判断在哪里下子赢的概率会高。

 

研究者们用许多专业棋局训练AI,这种方法称为监督学习(supervised learning),然后让AI和自己对弈,这种方法称为强化学习(reinforcement learning),每次对弈都能让AI棋力精进。然后他就能战胜冠军啦!

 

人类在下棋时有一个劣势,在长时间比赛后,他们会犯错,但机器不会。而且人类或许一年能玩1000局,但机器一天就能玩100万局。所以AlphaGo只要经过了足够的训练,就能击败所有的人类选手。

 

Google DeepMind

 

Google DeepMind是这个程序的创造者,我们来看一下他们萌萌的程序员。

 

 

面对谷歌围棋AI 人类最后的智力骄傲即将崩塌

 

杰米斯·哈萨比斯(Demis Hassabis) 是Google DeepMind 的CEO。图片来源:Nature Video

 

 
面对谷歌围棋AI 人类最后的智力骄傲即将崩塌

 

文章的第一作者大卫·西尔弗(David Silver)。图片来源:Nature Video

 

Google DeepMind 去年在《自然》杂志上发表过一篇论文[2],他们用增强学习的方法训练AI玩经典的Atari游戏。其实在几年前就有人研究如何让AI玩《星际争霸》,目前人类大师还是能击败AI的。电脑游戏中大量使用人工智能技术,你有没有觉得游戏变得越来越聪明了?

 

那么……未来呢?

 

人工智能研究者面对这样的成就当然欣喜。深度学习和强化学习等技术完全可以用于更广泛的领域。比如最近很火的精准治疗,我们可以训练它们判断哪些治疗方案对某个特定的人有效。

 

但是,围棋毕竟不仅仅是一项智力成就。就像十多年前的国际象棋一样,围棋必定也会引发超出本领域之外的讨论。等到计算机能在围棋上秒杀人类的时候,围棋是不是就变成了一种无聊的游戏?人类的智力成就是不是就贬值了?AI还将在其他层面上继续碾压人类吗?传统认为AI不可能完成的任务是否也都将被逐一打破?人类最后是会进入AI乌托邦还是被AI淘汰呢?

 

没人知道答案。但有一点毫无疑问:AI一定会进入我们的生活,我们不可能躲开。这一接触虽然很可能悄无声息,但意义或许不亚于我们第一次接触外星生命。

 

(编辑:Ent,Calo)

hot_powerz2016-01-27 20:33:01
想起关于AI的为何很危险的一些讲法,说AI就像人类热切期盼的一辆远远驶来的列车,
加州老李2016-01-27 20:34:57
哗众取宠。难道“谷歌围棋AI”不是人设计的?怎么“人类最后的智力骄傲即将崩塌”?
加州老李2016-01-27 21:05:55
物质是否无限可分、计算机是否会超过人脑,这类问题既是科学问题,也是哲学问题。
happymask2016-01-27 22:30:35
商业宣传,李世石如果能研究一下AI棋局,应该能轻松胜出。AI 局面判断不会准
π2016-01-28 01:21:35
不错, 当人工智能超过人类智慧的时候,人类应该退出历史舞台了,自然界的必然规律。
hot_powerz2016-01-28 02:41:50
你说是初级人工智能,高级人工智能能够自己学习,自己判断。像围棋,高级人工可以
加州老李2016-01-28 15:23:00
学习方法也是一种知识。人的知识有各种类型。
hot_powerz2016-01-28 17:22:00
这个定义还太窄!已经有人在研究人工生命式的人工智能了,与大家传统理解不一样
企鹅肥肥2016-01-29 02:48:24
下棋不过是人的智能之一,其他的还包括艺术创作,发明创造等,这些人工智能还达不到,谈不上“人类最后的智力骄傲即将崩塌”。
企鹅肥肥2016-01-29 02:53:16
人工生命的人工智能如果能自我进化,自我学习,自我繁殖,那么非人工生命的人工智能必然也能自我进化,自我学习,自我繁殖。
企鹅肥肥2016-01-29 02:58:21
现代人工智能所谓的学习,其实是一种建立分类的方法,通过不停地用正例和反例来建立一个分类树,然后用该树来鉴别新事物,是一种数学方法
企鹅肥肥2016-01-29 21:27:42
呵呵,没有那么简单。人工智能下棋的基本原理是排除所有的失败走法而已。这个人是比不过AI的。